NUAT B-spline curves

نویسندگان

  • Guozhao Wang
  • Qinyu Chen
  • Minghua Zhou
چکیده

This paper presents a new kind of splines, called non-uniform algebraic-trigonometric B-splines (NUAT B-splines), generated over the space spanned by {1, t, . . . , tk−3, cos t, sin t} in which k is an arbitrary integer larger than or equal to 3. We show that the NUAT B-splines share most properties of the usual polynomial B-splines. The subdivision formulae of this new kind of curves are given. The generation of tensor product surfaces by these new splines is straightforward.  2003 Published by Elsevier B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves

In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...

متن کامل

TENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE

In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...

متن کامل

3D Reconstruction Using Cubic Bezier Spline Curves and Active Contours (Case Study)

Introduction 3D reconstruction of an object from its 2D cross-sections (slices) has many applications in different fields of sciences such as medical physics and biomedical engineering. In order to perform 3D reconstruction, at first, desired boundaries at each slice are detected and then using a correspondence between points of successive slices surface of desired object is reconstructed. Mate...

متن کامل

Degree Elevation of Interval B-Spline Curves

O. Ismail, Senior Member, IEEE Abstract— This paper presents an efficient method for degree elevation of interval B-spline curves. The four fixed Kharitonov's polynomials (four fixed B-spline curves) associated with the original interval B-spline curve are obtained. The method is based on the matrix identity. The B-spline basis functions are represented as linear combinations of the B-splines o...

متن کامل

The Effect of Knot Modifications on the Shape of B-spline Curves

This paper is devoted to the shape control of B-spline curves achieved by the modification of one of its knot values. At first those curves are described along which the points of a B-spline curve move under the modification of a knot value. Then we show that the one-parameter family of k order B-spline curves obtained by modifying a knot value has an envelope which is also a B-spline curve of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2004